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Abstract. In this paper we present Etalog – a formal knowledge 

representation language developed in the Laboratory of Computational 

Linguistics IITP RAS in scope of the semantic text analyzer SemETAP. 

Borrowing ideas from existing formalisms we created a formal language which 

is a) more expressive than Description Logic, b) more human-readable than 

Datalog and Turtle, c) allows capturing not only truth-conditional but also (a 

part of) communicative structure of the sentence. 
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1 Introduction 

The semantic text analyzer SemETAP, under development in the Laboratory of 

Computational Linguistics IITP RAS, is aiming at performing deep semantic analysis 

of natural language texts. Based on various linguistic and extra-linguistic resources (a 

combinatorial dictionary, an ontology, a fact base and an inference engine), 

SemETAP is able to build a semantic structure of the text and extend it with implicit 

knowledge using inference rules (Boguslavsky et al 2015, 2018). 

Semantic structure is based on the ontology and is built in two steps. First a 

syntactic (dependency) tree of the sentence is produced, and then (roughly) words are 

replaced with semantic concepts from the ontology and syntactic relations – with 

semantic ones, which results in a set of binary predicates (triples) of the form 

relation(node1,node2) or a semantic graph.  

Below is an example of a sentence, its syntactic tree, semantic graph and the 

corresponding set of triples: 
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(1) John sold an umbrella to Peter 

Fig. 1. Syntactic tree of sentence (1)

 

Fig. 2. (Simplified) semantic graph of sentence (1)

 

(2) hasGivenName (Human_1, "John") 

hasAgent (Selling_1, Human_1) 

hasAgent2 (Selling_1, Human_2) 

hasObject (Selling_1, Umbrella_1) 

hasGivenName (Human_2, "Peter") 

before (Selling_1, SpeechTimeInterval) 

In the semantic structure, each node represents an individual of a certain class 

(semantic concept). There are implicit triples that assign a class to each individual, 

such as isA(Human_1,Human) or Human(Human_1), but since the class name 

is encoded in the individual name these triples are omitted for the sake of simplicity. 

A sale event could be represented as an n-place predicate: Selling(Human_1, 

Umbrella_1, Human_2), but its reduction to binary predicates as suggested by 

neo-Davidsonian semantics (Parsons 1990, Higginbotham 2000), has a number of 

advantages: a) the event individual (Selling_1) allows attaching time, location and 

other adjuncts to the event; b) unexpressed arguments (such as selling price) can be 

safely ignored; c) the semantic structure resembles the syntactic one in a more 

straightforward way; d) it makes the semantic structure compatible with Semantic 

Web standards – RDF and OWL. 
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On the other hand a big list of unsorted triples is hard to read or type manually 

(when writing inference rules). Etalog was created to solve this issue. While 

maintaining the underlying structure as a set of triples it allows presenting it in such a 

way that simplifies reading and typing. Etalog is used for two purposes: 

1. to write inference rules; 

2. to represent the semantic structure of the sentence. 

2 Language Features 

Etalog emerged as a language for inference rules, most of which in our system are 

concept decomposition rules. Concept decompositions are similar to word definitions 

in the explanatory dictionary, but are written in formal language. They are created 

manually by linguists. 

Originally both the premises and the conclusion of the rules were written as a list 

of triples. In our rules one variable usually participates in many relations, so the 

variable name had to be typed multiple times. A small typo in the variable name could 

lead to hard-to-identify logical errors. In the example below variables ?selling and 

?buying are repeated 7 times each, other variables – 3 times each. 

(3) Rule Selling: // Sale 

 Selling (?selling) -> 

 hasAgent(?selling,?seller), Agent(?seller), //seller 

 hasAgent2(?selling,?buyer), Agent(?buyer), //buyer 

 hasObject(?selling,?thing), Thing(?thing), //product 

 hasPrice(?selling,?money), Money(?money), //money 

 // Sale is defined through Purchase 

 hasSyncEvent(?selling,?buying), Buying(?buying),  

 hasAgent(?buying,?buyer), 

 hasAgent2(?buying,?seller), 

 hasObject(?buying,?thing), 

 hasPrice(?buying,?money), 

 hasSyncEvent(?buying,?selling). 

To reduce the variable usage the following changes were made to the language: 

1. Instead of functional PSO notation, triples are now written in SPO notation 

without parentheses: ?selling hasAgent ?seller. This is similar to 

RDF/Turtle (Beckett et al 2014) and offers a closer resemblance to natural 

language. Unary predicates (class assignments) are also written without 

parentheses but they precede the subject: Agent ?seller. 

2. Two or more consecutive triples with the same subject can be joined together 

without repeating the subject: ?selling hasAgent ?seller 

hasAgent2 ?buyer is equivalent to ?selling hasAgent 

?seller, ?selling hasAgent2 ?buyer. Turtle also supports this 

feature but requires triples to be separated by a semicolon. In Etalog no special 
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separator is needed, which resembles the behavior of prepositions in natural 

language, where we can attach multiple prepositions to the same verb: ‘go 

from Moscow to Kazan’. This feature allows us to write a complex proposition 

with a single usage of the subject variable. 

3. If the subject variable is used only once in the expression, it can be omitted 

altogether when preceded by a class name. Buying hasAgent ?buyer is 

equivalent to Buying ?x hasAgent ?buyer. The variable name is 

generated automatically for internal purposes and is not shown to the user. 

4. Nested expressions are allowed. In the place of a variable it is possible to use a 

(bracketed) complex proposition in which this variable is a subject. 

?selling hasAgent (Agent ?seller) is equivalent to ?selling 

hasAgent ?seller, Agent ?seller. Nested expressions also allow 

the variable name to be omitted, if it is not used anywhere else: ?selling 

hasAgent (Agent). 

5. Native support for inverse relations introduced. Relations of the form hasX 

(such as hasAgent, hasObject, etc.) can be used in the inverse form of 

isXOf (isAgentOf, isObjectOf, etc.) even if the inverse relation is not 

defined in the ontology. ?seller isAgentOf ?selling is equivalent 

to ?selling hasAgent ?seller but has ?seller as a subject. So it 

can be combined with other triples where ?seller is a subject into a 

complex proposition: Agent ?seller isAgentOf (Selling 

hasObject (Umbrella)). This resembles the relative clause 

construction in natural languages: ‘An agent who sold the umbrella’. 

All these features greatly reduce the usage of variable names in Etalog expressions 

and make the Etalog text look more natural. Here is how the above rule will look like 

after all the features are applied: 

(4) Rule Selling: // Sale 

 Selling ?selling -> 

 ?selling 

  hasAgent (Agent ?seller) // seller 

  hasAgent2 (Agent ?buyer) // buyer 

  hasObject (Thing ?thing) // product 

  hasPrice (Money ?money) // money 

  hasSyncEvent 

  ( // Sale is defined through Purchase 

   Buying 

    hasAgent ?buyer 

    hasAgent2 ?seller 

    hasObject ?thing 

    hasPrice ?money 

    hasSyncEvent ?selling 

  ). 
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A semantic graph having a tree-like structure can be written in Etalog without 

mentioning any variable names whatsoever. This is similar to Description Logic 

(Baader et al 2003) and OWL Abstract Syntax (Patel-Schneider et al 2003). But 

unlike DL and OWL, which allow only tree-like expressions and do not make use of 

variables, in Etalog you can link different branches of the tree by introducing explicit 

variables and thus make a loop. 

Loops are very useful in concept decomposition rules, where different parts of the 

decomposition are usually interconnected. For example, see below a semantic graph 

of rule (4). DL and OWL are not expressive enough to capture such links. 

Fig. 3. Semantic graph of rule (4) 

 

On the logical level Etalog is compatible with Datalog+/- (Calì et al 2011) and 

supports the same set of logical constructions, namely: 

1. Conjunction 

2. Implication 

3. Implicit universal quantification in the antecedent 

4. Implicit existential quantification in the consequent 

Negation, disjunction, explicit quantification and modality are not supported at the 

level of language. There is some partial support for negation and modality in 

SemETAP semantic analyzer, but they are modelled as classes in the ontology, not as 

logical constructions of the language. Introducing full-fledged support for these 

features is constrained by RDF model (which has native support only for conjunction) 

and by the reasoner capabilities (adding these features can greatly increase the 

reasoning complexity). 

3 Inference Rules Application Process 

Another advantage of Etalog is that it hides technical details of the rule application 

from the linguist who creates the rule. 

As we can see from the example above, concept decomposition almost always 

requires new variables to be present in the consequent which are not there in the 

antecedent. These variables represent various parts of the concept decomposition, in 

particular the arguments of an event.  
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Every situation of selling involves a seller, a buyer, a product and money. If 

anything is missing from the situation it cannot be called ‘selling’. Nevertheless not 

all of these four arguments are necessarily instantiated in a sentence. In (1) there is no 

mentioning of money. In ‘The car is sold’ three of the four arguments are missing. 

They may be missing in a sentence but they are still there in the situation the sentence 

describes. So, on the semantic level we have to restore all the missing arguments. 

Rules are applied in the forward chaining manner known as chase (Benedikt et al 

2017), i. e. they extend the existing semantic structure by adding new propositions 

and individuals to it. But we cannot just create new individuals for all new variables 

in the consequent. First we need to check if any of them are already there in the 

original semantic structure. 

The logic of these checks can be complicated (see Rygaev 2017 for details) but the 

bottom-line is that an Etalog rule is internally split into a number of smaller 

implications, which are applied independently.  Each such implication checks the 

existence of one or more individuals and creates them only if they are missing. For 

example, there will be a separate implication for each functional relation mentioned in 

the rule text. 

So, for an Etalog rule it is possible that some individuals will be accommodated 

from the existing data while others will be added. This happens invisibly for the 

linguists who create rules in Etalog, so they can concentrate on the concept 

decomposition and ignore technical aspects of the rule application. 

As we mentioned functional relations we have to note that Etalog rule compilation 

and application processes import certain data from an OWL ontology. This includes 

information about: 

1. Class hierarchy 

2. Inverse relations 

3. Functional and inverse functional relations 

Although all this information can be written in Etalog directly, it is much easier to 

include it in the ontology using OWL editors such as Protégé (Gennari 2003). 

4 Semantic Structure Representation 

Since the semantic structure of the sentence is also a set or triples, it is more than 

natural to represent it as an Etalog expression as well for better readability. But unlike 

inference rules, which are created manually, this task requires automatic generation of 

the Etalog expression from the set of triples. 

Given that Etalog has substantial expressive power, we see that there are now 

many different ways to represent the same set of triples. So the question arises: how 

to choose the most appropriate expression? How to group nodes into complex 

propositions? Where to use nested expressions and inverse relations? 

We came up with the following solution: 

1. Do not invert any relations unless they are explicitly inverted in the original 

set of triples. 
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2. Identify the closest head for each individual in the structure.  Starting from a 

node in the semantic graph and following the reverse direction of arrows 

identify the closest node which does not have any incoming arrows. 

3. In case of loops when we return to the same node without finding a head – sort 

all individuals in the loop alphabetically and declare the first one to be the 

head. 

4. Group all nodes by the closest head. 

5. Express each group as a single complex proposition starting from the head 

(using the head as its subject). 

Here is the Etalog expression for sentence (1) 

(5) Selling #1 

  hasObject (Umbrella #1) 

  hasAgent (Human #1 hasGivenName "John") 

  hasAgent2 (Human #2 hasGivenName "Peter") 

  before SpeechTimeInterval 

In this example we see another notation convention: a hash sign is used to shorten a 

variable name if it starts with the name of the class mentioned immediately before the 

variable. Selling #1 is equivalent to Selling ?selling_1. Since all the 

individuals in the semantic structure obtain such naming, the new notation was 

introduced in order to exclude names duplication for better readability but still keep 

the class assignment explicit. 

5 Communicative Dependencies 

The expressiveness of the language allows capturing not only truth-conditional 

meaning of the sentence but some part of the communicative (information) structure 

as well. Although introducing such categories as theme/rheme or given/new will 

require additional means of expressing, Etalog is already capable of capturing 

communicative (referential) dependencies between nodes. 

Igor Mel’čuk (2001) defines the communicative dependency in the following way: 

“In a semantic configuration (σ1–σ2), the semantic node (σ2) is said to depend 

communicatively on the semantic node (σ1) in a direct way, if this configuration can 

be reduced to (σ1) (rather than to (σ2)) such that the meaning conveyed is simply 

reduced but not distorted, the referent of (σ1) remaining the same as that of the whole 

configuration (σ1– σ2)”. 

Fig. 4. Simple semantic configuration of two nodes (4) 

 

For example, the referent of the semantic configuration in Fig. 4 can be either ‘crying’ 

(the baby cries, crying of the baby) or ‘baby’ (the crying baby, the baby who is 

crying) whereas the semantic dependency does not change (‘baby’ being the argument 
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of ‘crying’). The referent is determined by the communicative head of the 

configuration, not the semantic head. On the other hand the communicative head 

always corresponds to the syntactic head of a phrase when this configuration is 

expressed linguistically. “Comm-dependency is, so to speak, a way of 'foreseeing,' on 

the semantic level, the future syntactic dependencies” (Mel’čuk, ibid). 

Using inverse relations we can express this configuration in Etalog either as (Cry 

hasAgent (Baby)) or as (Baby isAgentOf (Cry)). So we can use Etalog 

syntax to represent the communicative dependencies between nodes while the 

underlying semantic structure (set of triples) remains the same. 

(6) The writer burned the novel that he had written 

(Burning #1 

  hasAgent (Writer #1) 

  hasObject 

   (Novel #1 

      isObjectOf 

       (Writing #1 

          hasAgent ?writer_1 

       ) 

   ) 

) 

(7) The novel was burned by the writer who had written it 

(Burning #1 

  hasObject (Novel #1) 

  hasAgent 

   (Writer #1 

      isAgentOf 

       (Writing #1 

          hasObject ?novel_1 

       ) 

   ) 

) 

Sentences (6) and (7) describe the same situation but constitute different messages 

for the hearer. They answer different questions (‘What did the writer do?’ and ‘Who 

burned the novel?’ respectively) and thus are communicatively different. In 

accordance to that, both Etalog expressions represent the same set of triples (the same 

truth-conditional meaning), but the syntax of the expressions mirrors the syntax of the 

sentences and thus reflects (some) communicative differences between them. They 

are organized in tree-like structures which resemble the syntactic trees of the original 

sentences. 

On the one hand such semantic representation is language-independent (it contains 

no language-specific features of the original sentence). On the other hand it contains 

enough information to restore the syntax of the original sentence (to some extent). So 

it is a good candidate (at least better than just a set of triples) to serve as a language-

independent interlingua to translate from one language to another. 
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6 Referring Expressions for Answers 

Another application of Etalog is to present answers to questions. SemETAP is able to 

answer questions to a text. A natural language question is converted into a SPARQL 

query and is run against the semantic structure of the text. The query returns an 

individual which corresponds to a wh-word in the question. 

Then we have to decide how to present it to the user. Ideally a natural language 

expression should be generated which allows the user to identify the object in the text. 

While we are not there yet, as an intermediate solution we present the answer 

expression in Etalog (Rygaev 2018). Here is an example: 

(8) Text: After a pass by Kerzhakov into the penalty area Arshavin with a brilliant 

shot in the fall hammers the ball into the net. 

Question: Which team does Arshavin play for? 

Answer: (FootballTeam isObjectOf (PlaysFor hasAgent 

(Human hasName "Kerzhakov"))) 

Potential translation: The team which Kerzhakov plays for (The same team 

with Kerzhakov) 

These Etalog expressions also capture not only truth-conditional meaning, but also 

the communicative (referential) structure of the answer. The expression is tree-like, 

with the found individual being the head of the phrase, and can serve as a template for 

the syntactic tree of the surface realization of the answer in natural language. Roughly 

what needs to be done is to replace ontological concepts with corresponding words 

and semantic relations with syntactic ones. This process is the opposite of the process 

of semantic analysis, which SemETAP is already capable to perform. 

7 Conclusions 

Etalog is a formal knowledge representation language, which is created to simplify 

reading and typing by linguists who work with it. It is based on the existing 

formalisms (Datalog+/-, Description Logic, RDF/Turtle) and borrows a couple of ideas 

from natural language. 

Etalog can express both fact knowledge (ABox in Description Logic terminology) 

as part of the semantic structure of the text and rule knowledge (TBox respectively) 

as a set of inference rules. 

In addition, Etalog is able to capture some elements of communicative (referential) 

structure of the sentence, which makes it suitable to use as a language-independent 

interlingua for translation from one natural language to another. 
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